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POWER GENERATION TECHNOLOGY OPTIONS FOR A MARS MISSION

John M. Bozek and Robert L. Cataldo

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

SUMMARY

The power requirements and resultant power system performances of an aggressive Mars mission are char-
acterized. The power system technologies discussed will support both cargo and piloted space transport vehicles as

well as a six-person crew on the martian surface for 600 days. The mission uses materials transported by cargo
vehicles and materials produced using in-situ planetary feed stock to estabhsh a hfe-support cache and infrastructure

for the follow-on piloted lander. Numerous power system technical options are sized to meet the mission power

requirements using conventional and novel solar, nuclear, and wireless power transmission technologies for

stationary, mobile surface, and space apphcations. Technology selections will depend on key criteria such as mass,

volume, area, maturity, and application flexibihty.

INTRODUCTION

NASA is currently in the process of identifying and quantifying mission architectures and technology options
for a manned Mars mission. The basehne mission architecture envisions landing six astronauts on the martian

surface by the first decade of the next century and providing the capability for in-situ production, bioregenerafive

life support, surface habitation and mobihty, emergency power, and lift-off propellants for _ return. These goals
will be accomplished with a range of power system options that use both conventional and novel technologies to

satisfy these diverse requirements.

This report provides a brief description of the current mission requirements and presents a prehminary

performance evaluation of a variety of space and surface power technology options from the standpoint of power

system mass, volume, and deployed area.

MISSION REQUIREMENTS
z

The mission architecture calls for a "spht" mission concept in which cargo and piloted vehicles are launched

separately. A series of three cargo vehicles will be launched to Mars in 2-month intervals starting in late 2007. The

cargo vehicles will have sufficient material and power capability to autonomously emplace an infrastructure capable

of supporting six astronauts. Upon confirmation that the infrastructure and a cache of hfe-supporting, in-situ products

are in place, a piloted Mars transfer vehicle (MTV) will follow at the next opportunity.

The first two cargo vehicles will deliver a habitat, a bioregenerative chamber for food production, a plant to

produce water, a plant to produce methane and oxygen, oxygen and buffer gases, two unpressurized rovers, one

pressurized rover, the power system(s) with cable-captive or wireless power transmission, and cache storage

capabihties to the martian surface. The third cargo vehicle will delver the Earth return vehicle (ERV) to martian
orbit where it will remain awaiting crew ascent, rendezvous, and subsequent trans-Earth insertion. The piloted MTV
contains a transit habitat that is ultimately placed on the martian surface with the six astronauts inside. This transit

habitat will expand the livable quarters on the surface beyond that available through a previous cargo vehicle

landing.

Table I shows the current mission power and duration requirements of the space and surface apphcation

elements. Space elements include the cargo and piloted vehicles required to accomphsh the Earth-Mars surface-Earth

transition; surface mission elements include hfe support, in-situ resource utihzation, rovers, and methane production.



Threeof the surface infrastructure elements that may use methane-based power are the habitaffbioregenerative

chamber and both manned rovers. In the event of a power system failure for the habitat/bioregenerative chamber,

the methane-based power system is a possible source of emergency backup power. A 5- and a 60-day emergency

period were analyzed.

Space power levels range from 2.5 kWe for the cargo vehicle to 30 kWe for the manned MTV and ERV, and

durations range from minutes to hundreds of days. While awaiting arrival of the crew in Mars orbit, the ERV is

designated as an orbiter and requires 5 kWe for 515 days.

Individual surface dements require power levels up to 120 kWe with durations ranging from hours to years.

However, in some instances, because of the anticipated proximity of these elements and the potential centralized

power system capability, selected mission dements have been combined to create a higher load requirement. These
combinations will be discussed in the Technology Options section.

The 10-kWe pressurized rover will be capable of 500 km sorties lasting 20 days with two to three astronauts

on board. The two 4-kWe unpressurized rovers will only operate for 10 daylight hours, with a range of 15 to 20 km

per sortie.

The in-situ resource utilization (ISRU) plant will produce a cache of water, oxygen, and buffer gases for crew

life support. The ISRU plant will be capable of several separate processes powered by a single 120-kWe power plant

and will produce a 600-day life support prior to the arrival of the crew on the martian surface.

The methane plant produces a cache of methane and oxygen that can provide propellants for Mars surface lift-

off capability or for an energy source for the habitat, bioregenerative chamber, and rovers. The manufacturing

process uses hydrogen imported from Earth and in-situ carbon dioxide from Mars' atmosphere to produce water and

methane. Electrolysis of water produces usable oxygen and recyclable hydrogen. A 40-kWe plant can produce

sufficient products to provide up to 60 days of emergency power for the habitat and bioregenerative chamber, and

can produce 4 and 10 kWe for the unpressurized and pressurized rovers, respectively.

TECHNOLOGY OPTIONS

The power technologies examined included systems for operational power in table II and methane-based power
in table III. Both tables display the mass, deployed area, volume, power system application, and required power

level of these technologies. Reactor- and isotope-based power systems comprise the nuclear technologies, and

photovoltaic arrays and solar concentrators, with and without energy storage, comprise the nonnuclear category,

including primary electrochemical energy storage.

Nuclear reactor power systems are based on SP-100 reactors and Stirling cycle thermal-to-electric conversion

technologies; however, over the range of power levels shown, the mass, area, and volume values are representative
of other SP-100 systems using Brayton or thermoelectric conversion. Reactor power systems have been used to

provide operational power for multiple load applications. For these applications, all reactor power systems have been

arbitrarily located 2 km away from the nearest load. In addition, reactor power systems include an integral 4re

radiation shield designed to limit human exposure to 5 rem/yr at a distance of 2 km.

The largest multiple load application (270 kWe) was powered by a 520-kWe SP- 100/Stifling cycle power System

using a wireless power transmission system based on microwave technology. Discounting the increased load

requirement discussed below, a key feature of this concept is that the location of loads and the power system are

not constrained by a fixed cable length. The 270-kWe total load for this power system includes the methane and

ISRU plants, a habitat/bioregenerative chamber, and an additional 25-kWe habitat to quantify the extent to which
diverse loads can be accommodated. All loads can be located at diverse locations up to 14 kin, the maximum line-
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of-sight distance for a 10-m-high antenna and a 5-m-high rectenna. The wireless transnaission power system includes

a 20 000-kg, 520-kWe SP-100/Stirling power generator and a 5400-kg 100-GHz microwave transmitter subsystem
with individual antennas and rectermas for each load. The other multiple load application of 160 kWe is supplied

by a 180-kWe SP-100/Stirling cycle power system using a high-v01tageinsulated cable transmission.
!

The nuclear dynamic isotope power systems (DIPS) are based on general purpose heat source (GPHS)

technology with small Stirling cycle engines. DIPS-powered space and surface applications were limited to low

power levels with high energy requirements to limit the Earth launch inventory of plutonium. The human-rated

gamma radiation shield for rover applications was sized to limit exposure to 5 remJyr whereas the cargo vehicle

application did not require a shield. Also, the potential portability of a DIPS could permit additional operational or

emergency applications, such as habitat emergency power.

The solar-based power systems include a range of photovoltaic (PV) technology options for surface and space

applications and a solar dynamic (S/D) option for space applications only. Photovoltaic system options using GaAs
cell technology have been considered with fixed, tracking, and tent arrays. Electrochemical storage options included

high-energy-density NaS batteries for short-duration applications and H2/O 2 regenerative fuel cells (RFC) for long-
duration applications. A nonregenerative H2/O 2 primary fuel cell (PFC) was also considered for the short sortie and

daylight-only requirement for the unpressurized rover.

Methane-based power applications and technologies use the previously stored methane and oxygen cache to

generate electricity with three different conversion options (table Ill) and the Stirling cycle option uses external
combustion of methane and oxygen. The proton exchange membrane fuel cell (PEM FC) and solid oxide fuel cell

(SOFC) technologies use an H 2 reformer. The hydrogen is then combined with oxygen to operate the fuel cell. The

mass and volume of these options are strongly dependent on the operating duration of the specific applicatio n

because of reactant storage tank requirements.

CONCLUDING REMARKS

This report has presented preliminary estimates of the mass, volume, and deployed area for many power system

technologies as applied to numerous discrete .elements of a manned Mars mission. Selection of a power system
technology for a specific mission element will depend on further mission requirements and power system design

definitions. Even though the down selection to fewer technologies may be desirable, it may be premature, given the

technology maturation rate, the ever-changing political environment, and flux of mission requirements. In fact, the

power system technology trade-space may have to be expanded as technologies emerge from the laboratory.
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TABLE L--SPACE AND SURFACE ELEMENT REQUIREMENTS

Space mission element Power, Duration Surface mission element Power, Duration
kWe kWe

25
4

Cargo vehicle
Earth orbit
Tram-Mars insertion
Cruise to Mars orbit
Mars orbit insertion
Mm_ orbit to Mats surface

Mars _'anfer vehicle (MTV)

Earth orbit
Tram-Mars insertion
Cruise to Mars orbit
Mars orbit insertion

Earth return vehicle (ERV)
Tram-Earth insertion
Cruise to Earth orbit

Earth orbit insertion
Earth orbit to Earth surface

Orbiter (part of ERV)
Mars orbit

2.5

2.5

2.5

2_5

(a)

30
30
30
3O

5 days
2hr

339 days
2hr
(a)

1 day
30 vain

180 days
IIrain

I-Iabimt (crew of six)

Habitat (sta_d'oy mode)

Bioregenerative chamber

Pressurized rover

Unpressurizcdrover

15

lO

3O
3O
30

(a)

t0 rain

180 days

(a)
(a)

515 days

In-situ resoume utilization

ISRU plant

ISRU storage

Methane plant
Methane #ant storage

120

6

4O
1.3

aTo be determined.

>6yr
(a)

>6yr

20 days

10 hr

2yr

>6yr

lyr
As needed
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TABLE If.--OPERATIONAL TECHNOLOGIES

Power, Application Technology
kWe

Nuclear

27O

160

30

2.5

4

10

Habitat/bioregenerative chamber/ISRU/

Optional habitao'rnethme plant
Habitat/bioregenerative ehamber/ISRU

MTV or ERV/ERV's orbiter

Cargo vehicle

Unpressurized rover
Pressurized rover

Mass, Area, Volume,

kg m2 m 3

Sp_ 100/Stirling/microwave a 25 400 920 120

SP-/Stirling b 14 000 320 42

SP--/Stirling 2 600 40 23

DIPS 230 6 4

DIPS 460 16 9
DIPS 1 100 33 18

40

40

40

40

120

120

10

10
10

4

4

4

2.5

30

30

2.5

30

30

Habitat/bioregenerative chamber

1
ISRU plant
ISRU plant
Pressurized rover
Pressurized rover
Pressurized rover

Unpressurized rover

Unpressurized rover

Unpressurized rover
Cargo vehicle
MTV
ERV/ERV's orbiter

Cargo vehicle
MTV
ERV/ERV's orbiter

Normuclear (solar-based)

PV(FxdyRFC b#

pv('rrk)/RFC b.c
PV(Fxd)/NaS b_c

PV(Trk)/NaS b'c
PV(Fxd)/RFC d
PV(Fxd)/NaS d
I'FC
PV0:xd)/RrCd
PVffrk)/P.FC_
PFC

PV(Fxd)d

PV(Tem) d

PV(Trk)¢

pVO'rk) e
PV(Trk)/NaS e_

S/D e

S/D e
S/D.TES eJ'

27 000 15 000

19000 I1 000
26 000 12 000

21000 9200
30000 12000
20000 7200

6 500 13

2900 1200

3 700 930

160 6

150 100

58 40

79 47

960 560
1 000 560

69 22

860 280
950 280

alncludes rover recharge power.

bPower system used for a methane plant prior to
habitation.

CSized for global dust storm insolation.

dSized for hazy day insolation.
esized for Mars orbit insolation.

fOrbiter portion requires energy storage for a 5-kWe,

41-raineclipse of a 123-rainorbit.

DIPS
ERV
Fxd
ISRU

MTV

NaS

PFC
PV
RFC
S/D
Tent
TES
Trk

Dynamic isotope power system
Earth return vehicle

PV array with fixed orientation
In-sire resource utilization
Mars transfer vehicle

Sodium/sulfur battery

H2/O2primary fuelcell
Photovoltaic array
H2/O2 regenerative fuel cell
Solar dynamic
Fixed PV array in tent configuration

Thermal energy storage
Sun-lraeking PV array

820

390

640
320

690

340
29

66
51

1

5

1

2
28

28

0.01
.23

.23
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Power,

kWc

4
4
4

10

I0
I0
4O
4O
4O
4O
4O
4O

TABLE 1TI.--METHANE-BASED POWER TECHNOLOGIES

Tin_,

hr

I0

I0

I0

480

480

480

120

120

120

1440

1440

1440

Application

Unprcssurized rover
Unpr_surized rover
Unpressurized rover
Pressurized rover
Pressurized rover
Pmssuriz_ rover

Habitaffbioregmeradve chamber

Conversion

technology

PEM FCa

Stifling
SOFC b

PEM FCa

Stifling
SOFC b

PEM l=Ca

Stifling
SOFC b

PEM FC a

Stirring
SOFC b

kg

150

180
120

4200

13000

5000

500O

13000
560O

480O0

150000

58 000

aPEM FC, lxoton cxchm_gc membrane fuel cell.
bSOFC, solid oxide fuel cell.

Volume,

m 3

0.15

.29

.18
11
35

14
12

35

15
130
420
170
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